1.5. Краткие сведения об основных взрывчатых веществах
В зависимости от чувствительности к внешним воздействиям и способности к переходу от горения к детонации взрывчатые вещества разделяются на три основные группы ВВ.
Инициирующие, или первичные ВВ используются для возбуждения детонации или горения взрывчатых веществ других групп. Горение и детонация инициирующих ВВ происходит при незначительной затрате внешней энергии в результате теплового или механического воздействия (нагревание, удар, трение).
Бризантные, или вторичные ВВ используются для изготовления разрывных снарядов боеприпасов и для взрывных работ. Горение их переходит в детонацию только при определенных условиях (например, при горении большой массы вещества с большим числом пор или при горении в замкнутом прочном сосуде). При применении бризантных ВВ детонацию их вызывают с помощью взрыва вспомогательного заряда инициирующего (первичного) ВВ или с помощью взрыва заряда другого бризантного ВВ.
Пороха, или метательные ВВ используются в качестве метательных зарядов для огнестрельного оружия и в качестве топлива для реактивных двигателей. По составу они близки к бризантным ВВ, но горение их более устойчиво. Горение порохов не переходит в детонацию даже при давлении в несколько тысяч атмосфер.
При определенных условиях (например, при воздействии на них достаточно мощного начального импульса или если диаметр их больше критического) пороха могут детонировать. Некоторые из порохов имеют большой критический диаметр, и, кроме того, детонация порохов возможна только при взрыве мощного детонатора, — по этим причинам возникло мнение, что пороха не могут детонировать.
Инициирующие взрывчатые вещества
Гремучая ртуть [Hg(CNO)2] – соль гремучей кислотыHCNO, фульминат ртути — белый или серый кристаллический порошок с плотностью 4,4 г/ см3. Температура вспышки 175 – 1800С. Легко взрывается от незначительного удара и трения. Разложение гремучей ртути происходит в соответствии с уравнением
[Hg(CNO)2]Hg+ 2CO+N2+ 494 кДж.
Может гореть, но горение легко и быстро переходит в детонацию. Известны случаи детонации в результате падения коробки с сухой гремучей ртутью, в результате падения какого-либо предмета на рассыпанную гремучую ртуть и т.д. Чувствительность к механическим и тепловым воздействиям гремучей ртути уменьшается в присутствии воды (при содержании 30 % воды она даже не загорается, но может быть взорвана капсюлем – детонатором). Гремучая ртуть в присутствии влаги энергично взаимодействует с алюминием, поэтому ее нельзя хранить в алюминиевой посуде, и капсюли-детонаторы из гремучей ртути не изготавливаются из алюминия. Фульминаты алюминия являются очень чувствительными соединениями. Аналогична реакция образования фульмината меди, соединения, чувствительного к сотрясениям. Капсюли из меди предохраняются от влаги лакировкой изнутри и снаружи.
Соли гремучей кислоты – фульминаты – чрезвычайно опасны, т.к. взрываются во влажном состоянии и даже под водой ( особенно фульминаты ртути, золота и серебра). При высыхании брызг воды, содержащей гремучую ртуть, твердый остаток взрывает уже от действия солнечных лучей. Пыль, а также все промывные воды и водные отбросы производства фульминатов, склонны к самопроизвольному взрыву и перед удалением должны быть обезврежены нагреванием до 90 – 950С, что тоже небезопасно. Фульминаты применяют в пиротехнике в качестве запалов для других ВВ, для золочения (гремучее золото), для изготовления пистонов, запалов. Все эти препараты взрывают от толчка, падения, трения, сотрясения, нагревания, пламени, кислот и солнечных лучей. Гремучая ртуть применяется для снаряжения капсюлей – воспламенителей и капсюлей – детонаторов. Вследствие большой чувствительности сухой гремучей ртути к механическим воздействиям ее можно перевозить только в снаряженных изделиях. Длительное хранение гремучей ртути перед снаряжением допускается только под водой.
Азид свинца [Pb(N3)2] – соль азотистоводородной кислотыHN3, белый порошок с плотностью 4,8 г/ см3 и температурой вспышки 330-3400С. Обладает высокой чувствительностью. Известны случаи, когда азид свинца взрывался в результате нажима ногтем на его кристаллы. Для уменьшения чувствительности его флегматизируют парафином. При увлажнении азид свинца не теряет своей чувствительности. При поджигании внешним источником теплоты мгновенно детонирует. Взаимодействует с медью, не взаимодействует с алюминием. Азид свинца применяют для снаряжения капсюлей – детонаторов. Азотистоводородная кислота HN3 в безводном виде способна взрываться даже просто от сотрясения сосуда. В разбавленном водном растворе при хранении она практически не разлагается. Пары ее очень ядовиты, растворы вызывают воспаление кожи.
Взрывной распад азотистоводородной кислоты идет по уравнению: HN3Н2+ 3N2+ 590 кДж
Тринитрорезорцинат свинца (ТНРС) [C6H(NO2)3(O2Pb)H2O] – желто-коричневый порошок плотностью 3,1 г/см3 и температурой вспышки 2750С. Чувствительность к удару ниже, чем у азида свинца, а чувствительность к воспламенению выше. Применяется для снаряжения капсюлей-воспламенителей.
Тетразен илигуанилнитрозоаминогуанилтетразен [C2H8ON10] NH2 NH–NH-NO NH=C–NH–N=N–C=NH
Мелкокристаллический порошок желтоватого цвета плотностью 1,65 г/см3 и температурой вспышки около 1400С. Мало гигроскопичен. По чувствительности близок к гремучей ртути. Не взаимодействует с металлами.
Получение
В лаборатории получают этерификацией глицерина смесью концентрированной азотной и серной кислот. Кислоты и глицерин должны быть очищены от примесей. Для обеспечения безопасности процесса и хорошего выхода по глицерину кислотная смесь должна иметь малое содержание воды. Процесс начинают со смешения олеума (или лабораторной 98%-й серной кислоты) и меланжа. Смешение кислот производят при охлаждении для предотвращения термического разложения концентрированной азотной кислоты. Глицерин вносят из капельной воронки при интенсивном перемешивании и постоянном охлаждении колбы льдом (можно с добавлением пищевой соли). Контроль температуры осуществляют ртутным или электронным термометром. Процесс смешения кислот можно выразить в упрощенном виде следующей реакцией:
Реакция равновесная с сильным смещением равновесия влево. Серная кислота необходима для связывания воды в прочные сольваты и для протонирования молекул азотной кислоты с целью образования катионов нитрозония NO2+. Положительный заряд делокализован по всем электронным орбиталям катиона, что обеспечивает его устойчивость.
Затем реакционную смесь кислот и глицерина выдерживают непродолжительное время при охлаждении льдом. Жидкость расслаивается на два слоя. Нитроглицерин легче нитрующей смеси и всплывает в виде мутного слоя. Процесс этерификации проводят при температурах в районе 0˚С. При более низких температурах скорость процесса мала, при более высоких температурах процесс становится опасным и резко уменьшается выход продукта. Превышение температуры выше 25 °С грозит взрывом, поэтому синтез должен проводиться при строжайшем температурном контроле. Уравнение этерификации глицерина азотной кислотой в присутствии серной кислоты можно упрощенно записать следующим образом:
Верхний слой из реакционного стакана (колбы) сразу сливают в большой объём холодной воды при перемешивании. Температура воды должна быть 6—15 °C, объём — не менее, чем в 100—110 раз превосходить объём полученного НГЦ. Кислоты растворяются в воде, а нитроглицерин оседает на дно ёмкости в виде мутных капель бежевого цвета. Воду сливают и заменяют новой порцией холодной воды с добавлением небольшого количества соды (1—3 % по массе). Окончательную промывку производят небольшим количеством содового раствора до нейтральной реакции водной фазы. Для получения максимально чистого нитроглицерина (например, для исследовательских целей) производят последнюю очистку промывкой водой, что позволяет отделить остатки соды и нитрата натрия. Недостатки лабораторного получения НГЦ во многом связаны с необходимостью использования большого объёма промывных вод, что резко снижает выход продукта из-за безвозвратных потерь НГЦ на растворимость в воде, на практике эти потери могут достигать 30—50 % от всего полученного продукта. Большой объём промывных вод, напротив, позволяет максимально быстро и безопасно промыть НГЦ. Недостаточная промывка НГЦ от кислотных примесей и продуктов неполной этерификации приводит к очень низкой устойчивости продукции (пороха, ТРТ, БВВ и пр.) и делает НГЦ крайне опасным.
В промышленности получают непрерывным нитрованием глицерина нитрующей смесью в специальных инжекторах. Полученную смесь сразу разделяют в сепараторах (преимущественно системы Биацци). После промывки нитроглицерин используют в виде водной эмульсии, что упрощает и делает более безопасным его транспортировку между цехами. В связи с возможной опасностью взрыва НГЦ не хранят, а сразу перерабатывают в бездымный порох или взрывчатые вещества.
Большую часть производственных помещений предприятия, производящего НГЦ, занимают цеха по очистке и переработке жидких стоков и других отходов производства. Наиболее перспективные технологии данного направления основаны на замкнутых циклах использования оборотных сред (промывная вода, отработанная кислотная смесь и др.).
Бризантные взрывчатые вещества
Бризантные ВВ могут быть однородными и неоднородными (взрывчатые смеси).
I. Однородные бризантные ВВ
По химическому строению однородные бризантные ВВ разделяются на 2 группы: нитросоединения и нитроэфиры.
НИТРОЭФИРЫ – азотнокислые нитраты спиртов или углеводов.
1. Азотнокислые эфиры углеводов: главным представителем этих ВВ являются нитраты целлюлозы (нитроклетчатки). В зависимости от содержания азота делят на две разновидности: пироксилины (содержание азота 12 – 13,5 %) и коллоксилины (содержание азота 11,5 – 12 %).
Нитроцеллюлоза ипироксилин были открыты в 1832 г. Браконо. В 1846 – 1848 г.г. Г.И. Гесс и А.А. Фадеев исследовали свойства пироксилина и показали, что он по мощности в несколько раз превосходит дымный порох.
Взрывное разложение пироксилина может быть представлено уравнением: 2C6H7O2(ONO2)33N2+ 9СО + 3СО2+ 7Н2О.
При взрыве 1 кг пироксилина совершается работа, равная подъему 470 тонн на высоту 1 метр.
Пироксилин применяется для изготовления пироксилиновых порохов. По чувствительности пироксилин близок к гексогену. Сухой пироксилин при плотности 1,3 г/см3 имеет скорость детонации около 6500 м/с.
Коллоксилин менее чувствителен, чем пироксилин, и опасен главным образом в пожарном отношении. Хранят нитроклетчатку во влажном состоянии (с содержанием влаги до 30 %). Коллоксилин используют для получения лаков, целлулоида.
2. Азотнокислые эфиры спиртов.
Глицеринтринитрат (нитроглицерин) [C3H5(ONO2)3– маслянистая жидкость плотностью 1,6 г/мл, с температурой вспышки 1800С. Впервые был получен итальянским химиком Собреро в 1846 г. Чистый, не содержащий кислотных примесей нитроглицерин менее взрывчат, и более прочен. Нитроглицерин очень чувствителен к механическим воздействиям (толчкам, ударам, зажиганию гремучей ртутью). От пламени загорается с трудом и сгорает без взрыва. При взрыве 1 г нитроглицерина образует 467 см3 газов, а 1 л – 750 л газов (порох только 280 л). Нитроглицерин замерзает при +80С и становится значительно опаснее, потому, что его кристаллы при трении или разломе сильно разогреваются. При превращении в жидкое состояние его нельзя нагревать выше 11-120С, иначе он взрывает.
В 1854 г. знаменитый русский химик Н.Н. Зинин впервые поставил вопрос о применении нитроглицерина в качестве взрывчатого вещества. В 1867 г. нитроглицерин был применен сотрудниками артиллерийского офицера В.Ф. Петрушевского для взрывных работ на золотых приисках в Восточной Сибири.
В 1865 г. Сотрудник Зинина капитан Д.И. Андриевский предложил гремучертутный капсюль-детонатор, применение которого резко увеличило бризантное действие ВВ и привело к открытию явления детонации.
В период работы Зинина и Петрушевского в России жил шведский инженер А. Нобель. Ему принадлежит заслуга дальнейшего развития и практического использования работ русских ученых. Нобель изобрел ряд динамитов и нитроглицериновый порох (баллистит), усовершенствовал конструкцию капсюля-детонатора).
Чтобы сделать нитроглицерин менее опасным при хранении, транспорте и применении, а также для лучшего использования его взрывной силы, его смешивают с кизельгуром (панцири инфузорий, инфузорная земля) и получают твердый динамит. 100 г кизельгура впитывает 75 г нитроглицерина. Готовый динамит без взрыва переносит толчки, падение, трение. Однако внезапное нагревание, взрыв гремучей ртути может привести к взрыву. Так же как и нитроглицерин, динамит не следует доводить до замерзания, которое происходит при – 40С. Оттаивание можно проводить только очень медленно с помощью влажного, умеренно теплого песка. Замерзший динамит нельзя подвергать резкому нагреванию (пламенем, искрами и даже комнатной температурой).
Гремучий студень (взрывчатая желатина) состоит из 90 % нитроглицерина и 10 % пироксилина. Она менее опасна, чем ее составные части, потому, что содержит немного камфары. Сгорает как динамит, в замерзшем состоянии становится несколько чувствительнее к толчкам, но не так опасна как динамит или нитроглицерин. Под водой сильно взрывает.
Нитрогликоль (гликольдинитрат) [CH2ONO2 — CH2ONO2] используется для производства незамерзающих динамитов. Обладает повышенной летучестью.
Нитродигликоль (дигликольдинитрат) [CH2ONO2–СН2– О – СН2– СH2ONO2] вследствие малой летучести и ряда свойств, близких по свойствам к нитроглицерину, его применяют для приготовления порохов.
Тэн – азотнокислый эфир пентаэритрита – пентаэритрит-тетранитрат [C(CH2ONO2)4 или
CH2ONO2 O2NOH2C – C – CH2ONO2 CH2ONO2
— белое кристаллическое вещество, плотностью 1,77 г/см3, негигроскопичен. Температура плавления 1410С, температура вспышки 2150С. По сравнению с другими азотнокислыми эфирами тэн стоек. Более чувствителен к удару, чем тротил, тетрил и гексоген. Скорость детонации 7900 м/с. Тэн большей частью флегматизируют добавкой небольших количеств парафина (до 5 %), воска. Чистый тэн применяют в качестве вторичных зарядов для снаряжения капсюлей-детонаторов, а флегматизированный – для снаряжения детонирующего шнура, детонаторов, некоторых снарядов.
НИТРОСОЕДИНЕНИЯ представляют собойважнейший класс бризантных ВВ. Они характеризуются значительным фугасным и бризантным действием при малой чувствительности к механическим воздействиям. Эти вещества особенно пригодны для снаряжения артиллерийских снарядов и других боеприпасов. Достоинством этих соединений является их химическая стойкость.
Тротил или тринитротолуол [C6H2CH3(NO2)3 – желтый кристаллический порошок или чешуйки. Плотность 1,66 г/см3, температура вспышки 3000С. Температура затвердевания чистого ТНТ 80,850С, поэтому часто его используют в плавленом виде. Литой тротил детонирует не от капсюля-детонатора, а только в результате взрыва промежуточного детонатора из прессованного бризантного ВВ. Скорость детонации до 6900 м/с. Насыпной тротил более чувствителен к детонации, чем литой.
Горение тротила обычно не переходит в детонацию, однако если оно протекает в замкнутом сосуде с прочными стенками или в больших массах тротила, то возможна детонация.
Тротил не реагирует с металлами, но может реагировать со щелочами, образуя тротилаты. Тротилаты менее опасны, чем пикраты, но при их образовании выделяется значительное количество тепла, что может привести к возгоранию. Зарегистрирован случай воспламенения тротила в результате контакта с мыльной эмульсией.
Хотя горение тротила, как и других ВВ, происходит за счет кислорода, находящегося в самом тротиле, горящий тротил можно и нужно тушить водой. Вода, попадая на него, испаряется, на испарение требуется много тепла, поэтому температура продуктов горения уменьшается. Из-за недостатка тепла следующие слои не нагреваются до температуры вспышки, и горение прекращается.
Тротил является основным бризантным взрывчатым веществом для снаряжения боеприпасов. Его применяют в значительных количествах в сплавах с другими нитросоединениями: с гексогеном для снаряжения кумулятивных снарядов малого калибра; с 20 % динитронафталина под названием К-2; с 5 % ксилила под названием сплава Л и др. Из тротила готовят патроны и шашки для взрывных работ, в военное время применяли в смеси с селитрой.
Пикриновая кислота – тринитрофенол [C6H2OH(NO2)3]– желтый кристаллический порошок, растворимый в горячей воде. Плотность 1,6 – 1,8 г/см3, температура вспышки 3000С, скорость детонации около 7200 м/с. К удару и трению мало чувствительна.
Получена П. Вульфом в 1771 г. Длительное время пикриновая кислота использовалась как желтая краска для шерсти, шелка, кожи и волос. И только случайно, в конце 19 века было обнаружено, что она является взрывчатым веществом.
В открытом пространстве чистая пикриновая кислота спокойно сгорает сильно коптящим пламенем. При горении больших масс (например, складов), а также при горении в закрытых металлических сосудах горение может перейти в детонацию.
Большим недостатком пикриновой кислоты является ее способность образовывать соли при соприкосновении с металлами (кроме олова) в присутствии хотя бы небольшого количества воды. При этом образуются соли – пикраты, по своим свойствам близкие инициирующим ВВ. Наиболее опасны пикраты щелочных металлов.
Хранить пикриновую кислоту следует только в пластмассовой или деревянной таре. В настоящее время пикриновая кислота в качестве ВВ практически не используется.
В первой половине 20 века применялась как ВВ в различных странах под названиями мелинит (Россия, Франция), лиддит (Великобритания), шимоза (Япония), с/88 (Германия).
Пикрат аммония – аммонийную соль пикриновой кислоты применяли в США для снаряжения авиабомб.
Тетрилили тринитрофенилметилнитрамин — NO2 желто-коричневый кристаллический порошок С6Н(NO2)3Nплотностью 1,71 г/см3, температура вспышки CH3 около 1900С. Тетрил значительно чувствительнее к удару, чем тротил или пикриновая кислота. Скорость детонации 7470 м/с. Тетрил особенно пригоден для изготовления капсюлей-детонаторов и детонаторов. При работе с тетрилом зарегистрировано большое число несчастных случаев.
Гексоген или циклотриметилентринитрамин [C3H6O6N6]— белое кристаллическое вещество с температурой вспышки 2300С, температурой плавления 202,50С. Чрезвычайно чувствительно к удару, скорость детонации NO2-NCH2 8500 м/с. Из-за свой высокой чувствиельности в чистом виде не употребляется для изготовления зарядов, а используется флегматизированный гексоген. Чтобы различить флегматизированный гексоген, в флегматизатор добавляют оранжевый краситель. Нефлегматизированный гексоген используется для снаряжения боеприпасов в сплавах с тротилом. В этом случае тротил является флегматизатором. Такие смеси менее чувствительны, чем гексоген, и обладают большей мощностью, чем тротил.
Октоген или циклотетраметилентетранитрамин [C4H8O8N8] — O2N–NCH2N–NO2 / H2C CH2 / O2N – N CH2 N – NO2 Вещество плотностью 1,95 г/см3, температура плавления около 2800С. Термостойкость выше, чем у гексогена, скорость детонации 9100 м/с. Октоген применяют как термостойкое ВВ при бурении глубинных скважин и дроблении взрывным методом горячих слитков при разгрузке и ремонте доменных печей. Бризантное действие октогена больше гексогена.
Эдна – этилендинитрамин, химическая формула СН2–NH–NO2 СН2–NH–NO2 По силе и чувствительности равен тетрилу. По сравнению с последним менее токсичен и не обладает красящими свойствами.
Дина – диэтанолнитратнитрамин [O2N – N(CH2CH2ONO2)2]. Чувствительность к удару такая же как у тэна. По силе взрыва близок к тэну и гексогену. Хорошо пластифицирует нитроцеллюлозу.
Ксилил – тринитроксилол [C6 H(CH3)2(NO2)3]. Ксилил представляет собой нейтральное вещество, не образующее солей с металлами. Температура вспышки 3300С. Чувствительность к удару больше, а чувствительность к детонации меньше, чем у тротила. Применяют для снаряжения боеприпасов в виде смесей с аммиачной селитрой и в виде сплава с тротилом (сплав Л).
Динитронафталин [C10H8(NO2)2].Чувствительность нафталина к детонации очень мала, поэтому его применяют только в смеси с аммиачной селитрой (динафталит).
Динитробензол [C6H4(NO2)2]– вещество плотностью 1,57 г/см3, скорость детонации 6100 м/с. Обладает низкой чувствительностью к детонации. Ядовит.
II. Неоднородные бризантные ВВ.
К неоднородным бризантным ВВ относятся смеси окислителя с взрывчатым веществом или горючим.
1. Аммиачно-селитренные ВВ, содержащие в качестве окислителя аммиачную селитру NH4NO3–аммониты. Аммониты, состоящие из смеси тротила с селитрой, содержащие более 20% тротила, называются аммотолами. По чувствительности и опасности при изготовлении эти вещества опаснее тротила. Аммоналы – аммониты, содержащие алюминиевую пудру. Эти смеси могут загораться при соприкосновении с водой. Тушить водой при загорании категорически запрещается. Динамоны — смеси аммиачной селитры с горючими невзрывчатыми добавками (сухим торфом, древесной корой и т.д.).
2. Хлоратные и перхлоратные ВВ содержат в своем составе соли хлорноватой и хлорной кислот.
Преимущественно применяют соли хлорат калия KСlО3 («бертолетова соль»), перхлорат калия KСlО4 и перхлорат аммония NH4ClO4. При нагревании KСlО3 плавится, а около 4000С начинает разлагаться, причем распад может идти по двум направлениям: 4KСlО3 4KСl + 6О2 или 4KСlО3 3KСlО4 + KСl
Бертолетова соль KСlО3 и хлорноватокислый Рb(СlО3)2 свинец при стирании, толчке или нагревании с сахаром, мукой, древесиной (т.е. с органическими веществами), а также с углем, серой, фосфором, металлическими порошками взрываются очень сильно. Еще более сильные взрывы имеют место при взаимодействии хлоратов этих металлов с цианистым калием КСN, роданистым калием КСNS, сернистым железом Fe2S3, сернистой сурьмой. При работе с хлоратами поблизости не должно быть выделения сероводорода. Чрезвычайно чувствительны хлораты к жирам и маслам, поэтому не допускается контакт этих веществ с промасленной ветошью. Крепкие кислоты при взаимодействии с хлоратами выделяют из него взрывчатую двуокись хлора, которая кипит при +90С, а взрывается при 600С. Наибольшую опасность представляют высушивание хлоратов и размалывание сухого продукта. Взрывчатое начало в хлоратах представляет входящая в состав его хлорноватая кислота НСlО3, которая известна только в растворе. Ее концентрированные растворы воспламеняют простым соприкосновением такие органические вещества как бумага, ткани, дерево и т.п. Возможность применения хлоратных и перхлоратных ВВ для снаряжения боеприпасов сильно ограничена из-за большой чувствительности к механическим воздействиям.
3. Оксиликвиты – смеси жидкого кислорода с пористыми горючими веществами. Пропитывание оксиликвитных патронов, например, с торфом, производится непосредственно перед применением. Жидкий кислород энергично испаряется, и в зависимости от размеров патрона за время от нескольких минут до 1,5 часов такого рода боеприпасы теряют свои взрывные свойства. Аналогичным образом может быть использован и жидкий воздух (переходит в жидкое состояние при давлении 39 атмосфер и охлаждении до – 1400С). При испарении жидкого воздуха он теряет больше легколетучего азота, чем кислорода, и поэтому остающаяся жидкость все время обогащается кислородом. В этот момент жидкий воздух похож на динамит.
4. Взрывчатые соединения азота с хлором, бромом, иодом и серой. Нитрохлорид – хлористый азот NCl3 (масло Дюлонга) получается пропусканием хлора через раствор хлорида аммония: NH4Cl+ 3Сl24HСl+NCl3. Хлористый азот представляет собой маслянистую желтую жидкость с резким запахом. При нагревании выше 900С ( или ударе) он взрывается с чрезвычайной силой, при этом распадается на элементы (азот и хлор). Даже влажный, он взрывается от соприкосновения с фосфором, аммиаком, мышьяком, селеном, калием, натрием, жирными и эфирными маслами, жирами, скипидаром, каучуком. В сухом виде он взрывается от освещения лучами солнца или искусственного света. При взрыве хлористого азота пламени не образуется, но если он соприкасается с горючими веществами, они загораются от взрыва, и пожар возможен. Бромистый азот NBr3 и иодистый азот NI3 представляют собой соответственно маслообразную жидкость и черный порошок, по своим свойствам подобны хлористому азоту. Известны случаи, когда небольшое количество сухого иодистого азота, находящееся на одном конце скамейки, взрывалось, если на другой конец скамейки осторожно садился человек. Небольшие количества этих веществ взрывались даже от звуков музыкальных инструментов. Сернистый азот N2S3 –желтое вещество, взрывается от трения, удара и при 1790С, но менее энергично, чем предыдущие. При этом взрыв происходит с образованием пламени и может вызвать пожар.
Токсичность нитроглицерина
Физиологическое воздействие
Нитроглицерин высокотоксичен. Токсичность нитроглицерина объясняется тем, что он легко и быстро всасывается через кожу и слизистые оболочки (в особенности этому способствует слизистая ротовой полости, дыхательных путей и лёгких) в кровь. Токсичной дозой для человека считается 25—50 мг. Доза в 50—75 мг вызывает сильное отравление: происходит понижение АД, появляется сильная головная боль, головокружение, покраснение лица, сильное жжение в горле и под «ложечкой», возможна одышка, обморок, нередко наблюдается тошнота, рвота, колики, светобоязнь, недолговременные и проходящие расстройства зрения, параличи (особенно глазных мышц), шум в ушах, биение артерий, замедление пульса, синюшность, похолодание конечностей. Хроническое действие нитроглицерина (хроническое отравление организма нитроглицерином наблюдалось у работников, производящих динамит), вдыхание, а также приём внутрь больших доз (100—150 мг/кг) может привести к летальному исходу. LD100 для человека составляет около 112-210 мг/кг, смерть наступает в течение 2 минут. Нитроглицерин также может вызывать сильное раздражение кожи. У работающих с динамитом развиваются упорные язвы под ногтями и на концах пальцев, высыпания на подошвах и между пальцами рук, сухость кожи и трещины. Втирание в кожу 1 капли нитроглицерина вызвало общее отравление, длившееся 10 часов.
ПДК нитроглицерина для рабочей зоны составляет 0,02 мг/дм³. Класс опасности — 2.